

Students will...

- Graph square root functions.
- Compare graphs of square root functions.
- Simplify radical expressions.
- Solve square root equations, including those with square roots on both sides.
- Identify extraneous solutions.
- Discover the Pythagorean Theorem.
- Find missing side lengths of right triangles.
- Identify right triangles.
- Find distances between two points.
- Solve real-life problems.

In mathematics, a rule is called a theorem.
The legs of a right triangle are the two sides that form the right angle.

The hypotenuse of a right triangle is the side opposite the right angle.

You can use the distance formula to find the distance between any two points in a coordinate plane.

Chapter D: Square Root Functions and Geometry

Standards

Common

Core: 8.G.6,
8.G.7, 8.G.8,
N.RN.2, F.IF.4,
F.IF.7b

Essential Questions

- How can you sketch the graph of a square root function?
- How can you solve an equation that contains square roots?
- How are the lengths of the sides of a right triangle related?
- In what other ways can you use the Pythagorean Theorem?

Key Terms

A square root function is a function that contains a square root with the independent variable in the radicand.

A radical expression is in simplest form when:

- no radicands have perfect square factors other than 1
- no radicands contain fractions
- no radicands appear in the denominator of a fraction

When a radicand in the denominator is not a perfect square, multiply the fraction by an appropriate form of 1 to eliminate the radical from the denominator. This process is called rationalizing the denominator.

Reference Tools

A Word Magnet can be used to organize information associated with a vocabulary term. Students write the term inside the magnet. Students write the associated information on the blank lines that "radiate" from the magnet.

The binomials $a \sqrt{b}+c \sqrt{d}$ and $a \sqrt{b}-c \sqrt{d}$ are called conjugates.

A square root equation is an equation that contains a square root with a variable in the radicand.

A solution of a transformed equation that is not a solution of the original equation is an extraneous solution.

©OKey Ideas

Square Root Function

A square root function is a function that contains a square root with the independent variable in the radicand. The most basic square root function is $y=\sqrt{x}$.

Squaring Each Side of an Equation

- If two expressions are equal, then their squares are also equal.
- If $a=b$, then $a^{2}=b^{2}$.

Sides of a Right Triangle

The sides of a right triangle have special names.

The Pythagorean Theorem

- In any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.
- $a^{2}+b^{2}=c^{2}$

Converse of the Pythagorean Theorem

If the equation $a^{2}+b^{2}=c^{2}$ is true for the side lengths of a triangle, then the triangle is a right triangle.

Distance Formula

The distance d between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Quick Review

- When graphing, remember $f(x)+k$ is a vertical translation of $f(x)$.
- The graph of $f(x-h)$ is a horizontal translation of $f(x)$.
- Rationalizing the denominator works because you multiply the numerator and

What's the Point?

The ability to add, subtract, or multiply polynomials is useful in real-life for finding the perimeter or area of figures such as gardens.

The STEM Videos available online show ways to use mathematics in real-life situations. The Chapter 7: Bird Dropping Food STEM Video is available online at www.bigideasmath.com. denominator by the same nonzero number a, which is the same as multiplying by $\frac{a}{a}$, or 1 .

- The product of conjugates is a rational number.
- In a right triangle, the legs are the shorter sides and the hypotenuse is always the longest side.
- A Pythagorean triple is a set of three positive integers a, b, and c, where $a^{2}+b^{2}=c^{2}$.
- When using the converse of the Pythagorean Theorem, always substitute the length of the longest side for c.

